

AD-A261 079

OFFICE OF NAVAL RESEARCH Grant No. N00014-90-J-1263 RCT Project 4133002---05 Technical Report #25

A NUMERICAL SIMULATIONS OF ADSORPTION ONTO A CRYSTALLINE SURFACE

by

J. A. Hernando * and L. Blum**

Prepared for Publication in the J. Phys. C.

*Comisión Nacional de Energía Atómica, Buenos Aires, Argentina

and

**Department of Physics, University of Puerto Rico P.O. Box 23343 Río Piedras, P.R. 00931-3343, USA

Reproduction in whole or in part is permitted for any purpose of the United States Government

*This document has been approved for public release and sale; its distribution is unlimited

*This statement should also appear in Item 10 of Document Control Data - DD Form 1473. Copies of form available from congnizant contract administrator.

SECURITY CONSINCATION OF THIS PAGE						
REPORT DOCUMENTATION PAGE						
1a. REPORT SECURITY CLASSIFICATION		16 RESTRICTIVE MARKINGS				
2a. SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION AVAILABILITY OF REPORT				
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE						
4. PERFORMING ORGANIZATION REPORT NUMBER(S)		5 MONITORING ORGANIZATION REPORT NUMBER(S)				
Technical Report #25						
Physics Department 6b. OFFICE SYMBO (If applicable)		78 NAME OF MONITORING ORGANIZATION				
University of Puerto Rico						
6c. ADDRESS (City, State, and ZIP Code)	7b ADDRESS (City, State, and ZIP Code)					
Río Piedras Puerto Rico 00931-3343						
8a. NAME OF FUNDING SPONSORING ORGANIZATION Chemistry	· · · · · · · · · · · · · · ·		9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
ORGANIZATION Chemistry Office of Naval Research	Code 472	RCT Proje	ct 4133002	-05		
8c. ADDRESS (City, State, and ZIP Code)		10 SOURCE OF FUNDING NUMBERS				
Arlington		PROGRAM	PROJECT	TASK	WORK UNIT	
Virginia 22217-5000		ELEMENT NO	NO.	NO	ACCESSION NO	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
11. TITLE (Include Security Classification) A NUMERICAL SIMULATION OF ADSORPTION ONTO A CRYSTALLINE SURFACE						
12. PERSONAL AUTHOR(S) J.A. Hernando and L. Blum						
13a. TYPE OF REPORT 13b. TIME COVERED FROM TO		14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT 1-15-93				
16. SUPPLEMENTARY NOTATION						
17 COSATI CODES	Continue on reverse	if necessary and	identify by bloc	k number)		
FIELD GROUP SUB-GROUP	4					
	4					
19 ARSTRACT (Continue on reverse if necessary	and identify by block i	number)				
19 ABSTRACT (Continue on reverse if necessary and identify by block number)						
A particular model for the adsorption of a dense fluid onto a crystalline surface has been studied (L. Blum						
and D.A. Huckaby, J. Chem. Phys 94, 6887 (1991). The fluid is arbitrary and the crystalline surface is						
modelled by a hard wall decorated with a triangular lattice of sticky sites. This model can be mapped on a						
lattice gas model with interaction potentials related to the particle distribution functions of the smooth (undecorated) wall problem. Approximate adsorption isotherms in the 8-p plane (fraction of occupied sites						
vs. bulk density) have also been drawn. However, the effect that the three particle distribution function has						
on the critical point has also been estimated (D.A. Huckaby and L. Blum, submitted) and it is quite important.						
Here we have performed Monte Carlo simulations of a model system inspired on this work. It is a 2D systems						
interacting via a hard sphere plus a triangular well potential and immersed in an external field described by						
a triangular lattice of sticky sites. We have studied its phase diagram paying some attention also to its						
behavior in the limit of infinitesimally small sticky adhesion.						
İ	•					
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT DTIC USERS 21 ABSTRACT SECURITY CLASSIFICATION						
UNCLASSIFIED/UNLIMITED SAME AS	22b TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL					
228 NAME OF RESPONSIBLE INDIVIDUAL			(203) 696–4410 ONR 472			
Dr. Robert Nowak	iPR edition may be used u				OF THE 33.55	
DD FORM 1473, 84 MAR 83 A	All other editions are a		SECURITY	CLASSIFICATION I	OF THIS PAGE	

A Numerical Simulation of Adsorption onto a Crystalline Surface

J.A.Hernando^a and L.Blum^b

^a Depto de Física, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires, Argentina

Dept. of Physics, University of Puerto Rico, Rio Piedras, PR 00931-3343

The sticky site model (SSM) has been recently introduced as a simplified but not too unrealistic model of a structured solid-liquid interface [1]. Here we focus our attention on the adsorbed layer onto a surface that is modelled as a smooth plane surface with sticky points on it. These sticky points form a crystalline lattice representing the adsorption sites and the adsorbed layer feels them as an external potential. This potential u(r) can be represented by its Boltzmann factor

$$exp(-\beta u(r)) = 1 + \sum_{n_1,n_2} \lambda \delta(r - n_1 a_1 - n_2 a_2)$$
 (1)

Here a_1,a_2 describe the lattice, the stickiness parameter λ represents the fugacity of an adsorbed atom and $\beta=1/kT$.

We have performed MC simulations on a system of 196 particles that interact between themselves with the hard sphere-triangular well potential

$$v(r) = \begin{cases} \infty & r \leq 1 \\ V_1 \frac{r-1}{r_0-1} & 1 < r \leq r_0 \\ 0 & r > r_0 \end{cases}$$

the sticky sites form a triangular lattice of constant $a = r_0$ and are modelled by the potential

$$\mathbf{u}(\mathbf{r}) = \left\{ \begin{array}{cc} U_{\bullet} & \mathbf{r} \leq \delta \\ 0 & \mathbf{r} > \delta \end{array} \right.$$

with $r_0 = 1.30$, $\delta = 0.15$. There also are 196 sticky sites, the density is $\eta = \pi N/(4V) = .53$ (close packing is et a = .9) and the parameters that vary are T,V_s and U_s. Several data sets were considered and the runs' length was typically between 20 and 30 10° MC steps. In Fig. 1a,b,c,d, we show results for U_s = V_t = -50, T = 15,25,40 and in fig. 1c,f we plot adsorption isotherms as a function of u and adsorption as a function of T with U_s labelling the curves; V_t = -50 always. It is seen that the system undergoes a first order phase transition liquid-solid, that the solid commensurates with the lattice of sticky sites and that the uprising in adsorption coincides with $g_2(r)$ developing shoulders corresponding to the triangular lattice peaks.

References

[1] L. Blum, Adv. Chem. Phys. Vol LXXVIII, edited by I. Prigogine and S.A. Rice, John Wiley and Sons, N. York (1990).

Figure Captions

Figure 1. a) Stuck particles probability distribution function for $U_s=V_t=-50$, T=15,25,40 (solid, dot and dashed lines); b) pair distribution function for T=15 and triangular lattice peak positions (solid and dashed); c) idem as b) with T=25; d) idem as b) with T=40; e) adsorption isotherm as a function of U_s for T=15,25,40; f) adsorption as a function of T for $U_s=-70,-50,-30$.

3

DTIC QUALITY INSPECTED 3

		_		
Accession For				
NTIS	GRALI	3		
DTIC '				
Unannounced 🔲				
Justification				
				
Ву				
Distribution/				
Avai	lability	Codes		
	Avail and	d/or		
Dist	Special			
	1 1			
10~1	1 !			
7	1 1			
11,				